博客
关于我
紫书 例题 10-28 UVa 1393(简化问题)
阅读量:681 次
发布时间:2019-03-17

本文共 1119 字,大约阅读时间需要 3 分钟。

如何优化给定的文字:


问题分析与解决思路

这道题目具有对称特性,因此只需计算特定边界条件下的数目,并将结果乘以2即可。

1.1 包围盒分析

每一条直线可以看作一个包围盒,需要枚举包围盒的长宽。分析时需注意以下两种情况:

1.2 情况分析

(1)包围盒内部存在其他包围盒。这种情况下,只有在包围盒交点处且包围盒对角线不重合的情况下,需要单独计算。通过计算gcd值来判断是否为唯一交点。

(2)特殊情况处理:对角线落在一条直线上时,需要减去重复计数的数目。这时数目计算公式为:max(0, m - 2a) * max(0, n - 2b)最终数目为:(m - a) * (n - b) - max(0, m - 2a) * max(0, n - 2b)

1.3 代码实现

为了加快计算,提前预先计算所有gcd值并存储。通过预计算降低重复调用gcd函数的开销。主要代码实现步骤如下:

#include 
#include
#define REP(i, a, b) for(int i = (a); i < (b); i++)using namespace std;const int MAXN = 312;int g[MAXN][MAXN];int gcd(int a, int b) { return !b ? a : gcd(b, a % b);}int main() { REP(i, 1, MAXN) REP(j, 1, MAXN) g[i][j] = gcd(i, j); while (scanf("%d%d", &n, &m) && n) { int ans = 0; REP(a, 1, m + 1) REP(b, 1, n + 1) { if (g[a][b] == 1) { int c = max(0, m - 2*a) * max(0, n - 2*b); ans += (m - a) * (n - b) - c; } } printf("%d\n", ans * 2); } return 0;}

1.4 优化思路

  • 预计算gcd值,提升后续计算效率。
  • 避免重复计算,减少计算量。
  • 处理特殊边界条件,防止数目重复计数。

本文提供的代码实现高效地解决了问题,适用于大范围数据计算。

转载地址:http://oyyhz.baihongyu.com/

你可能感兴趣的文章
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>